Part Number Hot Search : 
M9514SE2 TMP86 12D05 N74HC M7402 MMB251W RD45101K C67078
Product Description
Full Text Search
 

To Download NJW1124 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 NJW1124
Voice Switched Speakerphone circuit
! GENERAL DESCRIPTION
The NJW1124 is a Voice Switched Speakerphone Circuit. NJW1124 includes all of functions processing a high quality hands-free speakerphone system, such as the necessary amplifiers ( Microphone , Receive ,Line), attenuators, level detectors functions. All external capacitors are sufficient small so that ceramic capacitors are applied.
! PACKAGE OUTLINE
! APPLICATION
*Video Door Phone *Conference System *Wireless Application *Security System
NJW1124V
! FEATURES
* Operating voltage range * Force to Receive, Transmit, or Idle modes * Mode -watching monitor * Attenuator gain range between Transmit and Receive * Microphone amplifier with mute function * Background noise monitor for each path * Volume control range * 4-point signal sensing * Microphone and Receive Amplifiers pinned out for flexibility * Package Outline 2.9 to 4.5V
52dB
40dB
SSOP32
! BLOCK DIAGRAM
C6 R2 100n 5.1k
R3 51k
C7 100n R4 51k R5 10k
C8 100n
C9 R6 100n 5.1k
R7 51k
Microphone
C10 TXO LII LiOLiO+ V+ V
+
Line Out
MCI
MCO
TLI2
TLI1
R1 300k
VREF Mic Amplifier
Tx Attenuator VREF
-1
Line Amplifier
V+ Monitor
C11 1
C1 1 C3 470n C4 470n C2 1u
MUT TLO2 RLO2
Level Detector
CT
V
+
C5 1
RTSW
Background NoiseMonitor Attenuator Control Background NoiseMonitor
CPT
CPR TLO1 RLO1
C22 1 C20 470n C21 470n
Level Detector
C23 1
VREF VREF2
BIAS
IC1
NJW1124
Receive Amplifier Rx Attenuator 1.2 A VREF GND
RXO RLI2 V+
R10 15k
5.0V
VLC
R12 51k
RLI1 FO
C18 100n R13 5.1k
FI
R14 5.1k C19 100n
+
C16 10 C13 C17 100n
R11 10k
RVLC
Recive In
C15 1
1
Speaker
IC2 NJU7084 Power Amplifier
C14 1 R9 22k R8 11k C12 100n
-1-
NJW1124
!PIN CONFIGURATION
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
32 31 30
NJW1124
VREF2 MUT NC CPT TLO2 RLO2 CT MCI MCO TLI2 TLI1 TXO LII LIOLIO+ GND
29 28 27 26 25 24 23 22 21 20 19 18 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17
MON RTSW VREF CPR RLO1 TLO1 VLC FI FO RLI1 RLI2 RXO NC NC NC V+
-2-
NJW1124
! ABSOLUTE MAXIMUM RATING (Ta=25C) PARAMETER SYMBOL
Power Supply Voltage Power Dissipation Operating Temperature Range Storage Temperature Range Maximum Input Voltage V+ PD Topr Tstg VIMAX
RATING
5.5 800 (Note1) -40 ~ +85 -40 ~ +125 0~V
+
UNIT
V mW C C V
(Note1) EIA/JEDEC STANDARD Test board (76.2x114.3x1.6mm, 2layer, FR-4) mounting (Note2) Don't apply the input voltage that exceeds supply voltage.
! OPERATING VOLTAGE PARAMETER Operating Voltage
SYMBOL
V
+
TEST CONDITION
-
MIN.
2.9
TYP.
4.0
MAX.
4.5
UNIT
V
! ELECTRICAL CHARACTERISTICS (Ta=25C,V+=4V,MUT=ACTIVE,RTSW=OPEN,RVLC=0,GVM=0dB,ReceiveAmplifierGV=0dB) PARAMETER Operating Current 1 Operating Current 2 Operating Current 3 Reference Voltage SYMBOL
ICC1 ICC2 ICC3 VREF
TEST CONDITION
RX-mode (Receive) TX-mode (Transmit) Idle-mode Idle-mode
MIN.
0.7 0.7 0.7 1.7
TYP.
2.0 2.0 2.0 2.0
MAX.
4.0 4.0 4.0 2.3
UNIT
mA mA mA V
Receive Attenuator (RxIN=100Vrms,Receive Amplifier Gv=0dB) PARAMETER Receive Attenuator Gain 1 Receive Attenuator Gain 2 Receive Attenuator Gain 3 Range R to T mode Dynamic DC offset Volume control range
Maximum DetecterSink Current
SYMBOL
GR1 GR2 GR3 GR GRDC GRVR IRSINKMAX
TEST CONDITION
RX-mode (Receive) TX-mode (Transmit)
Idle-mode (Standby),CPT=CPR=V
+
MIN.
3.0 -43 -17 47 -50 30 -
TYP.
6.0 -46 -20 52 40 -
MAX.
9.0 -50 -23 57 50 50 200
UNIT
dB dB dB dB mV dB A
RX-mode - TX-mode RX-mode - TX-mode (DC) RX-mode,RVLC=0-100k
RLI1,TLI1,Maximum Sink Current
Transmit Attenuator (TxIN=100Vrms,Mic.amplifier Gv=0dB) PARAMETER Transmit Attenuator Gain 1 Transmit Attenuator Gain 2 Transmit Attenuator Gain 3 Range R to T mode Dynamic DC offset Volume control range
Maximum DetecterSink Current
SYMBOL
GT1 GT2 GT3 GT GTDC GTVR IRSINKMAX
TEST CONDITION
TX-mode (Transmit) RX-mode (Receive) Idle-mode CPT=CPR=V TX-mode - RX-mode TX-mode - RX-mode (DC) RX-mode,RVLC=0-100k
RLI1,TLI1,Maximum Sink Current
+
MIN.
3.0 -43 -17 47 -50 31 -
TYP.
6.0 -46 -20 52 40 -
MAX.
9.0 -50 -23 57 50 46 200
UNIT
dB dB dB dB mV dB A
-3-
NJW1124
MIC Amplifier (TxIN=1mVrms,Gv=40dB,RL=5.1k) PARAMETER
Output Offset Voltage Input Bias Current Voltage Gain 1 Voltage Gain 2 Maximum Output Voltage Maximum Output Current Maximum Attenuation
SYMBOL
VMOS IMBIAS GVM1 GVM2 VMMAX IMOMAX GMMUTE
TEST CONDITION
R5=300k,VMOS=VMCI -VMCO f=1kHz f=20kHz THD=1% R5=300k
MIN.
-30 0.9 70
TYP.
0.0 0.0 40 38 1.5 73
MAX.
30 -
UNIT
mV nA dB dB Vrms mA dB
Receive Amplifier(RxIN=1mVrms,Gv=40dB,RL=5.1k) PARAMETER
Output Offset Voltage Input Bias Current Voltage Gain 1 Voltage Gain 2 Maximum Output Voltage Maximum Output Current
SYMBOL
VROS IRBIAS GVR1 GVR2 VRMAX IROMAX
TEST CONDITION
RF=300k,VFOS=VFI -VFO f=1kHz f=20kHz THD=1% -
MIN.
-30 0.9 -
TYP.
0.0 30 40 38 1.5
MAX.
30 -
UNIT
mV nA dB dB mVrms mA
Line Amplifier (LINEIN=50mVrms, GV=26dB,RL=1.2k) PARAMETER
Output Offset Voltage Input Bias Current Voltage Gain 1 Voltage Gain 2 Closed Loop Gain Maximum Output Voltage Total Harmonic Distortion Maximum Output Current
SYMBOL
VLOS ILBIAS GVL1 GVL2 GLC VLMAX THDLN ILOMAX
TEST CONDITION
R9=51k f=1kHz f=20kHz LIO- to LIO+ THD=1% f=1kHz -
MIN.
20 -0.5 1.5 -
TYP.
0.0 0.0 26 25 0 4.0
MAX.
20 0.5 0.5 -
UNIT
mV nA dB dB dB Vrms % mA
Monitor Terminal (32Pin) Output Voltage PARAMETER
RX-mode TX-mode Idle-mode Maximum Output Current
SYMBOL
Rx Tx Idle IMON -
TEST CONDITION
MIN.
V -0.3 +
TYP.
V /2 1.0
+
MAX.
0.3 -
UNIT
V V V mA
No Signal Rx-mode / Tx-mode
-4-
NJW1124
! CONTROL CHARACTERISTICS (MUT) PARAMETER Low Level Input Voltage High Level Input Voltage SYMBOL VIL1 VIH1 TEST CONDITION MIN. 1.5 TYP. MAX. 0.3 UNIT V V
! CONTROL CHARACTERISTICS (RTSW) PARAMETER Low Level Input Voltage High Level Input Voltage SYMBOL VIL2 VIH2 TEST CONDITION +
MIN. V -0.3
TYP. -
MAX. 0.3 -
UNIT V V
! FUNCTION MUT (2pin) INPUT VOLTAGE VIH VIL RTSW (31pin) INPUT VOLTAGE VIH OPEN VIL RVLC (26pin) IMPEDANCE 0 100k STATUS VolMAM VolMIN OPERATION The Receive attenuator Volume is maximum. The Receive attenuator Volume is minimum. STATUS Receive AUTO Transmit OPERATION Force to Receive mode. Receive mode and Transmit mode are automatically switched. Force to Transmit mode. STATUS MUTE ACTIVE OPERATION The microphone input is made a mute. The microphone input is active.
-5-
NJW1124
! MEASUREMENT CIRCUIT
S12
OPEN V+ OPEN
S13
R LMH
4.7k
R LML
4.7k
1 S2
VIH VIL
VREF2
MON
32 S6 31 30 29 28 27 S8
0ohm
MONOUT
100
VIH OPEN VIL
100
2 3
MUT
RTSW
NC
VREF
1u Vref
S4
V+ OPEN
1u 1k 100n
NJW1124
4 5 6 7 8
CPT TLO2
CPR
1u 1k 100n
S7
V+ OPEN
RLO1
100n
RLO2
TLO1
100n
1u 300k TxIN 3k
40dB
CT
VLC
26 25
100k
100k
S5
0dB 1u
300k 1u 0dB 3k
40dB
MCI MCO
FI
RxIN
300k
300k
S9
FilterOUT 100n
MCOUT 100n 5.1k
9 10
5.1k
FO
24
5.1k
TLI2
RLI1
23
5.1k
11
100n TxOUT 1u LINEIN 51k 47p 5.1k
TLI1
RLI2
22
100n
12 13 14
TXO
RXO
21 20 19 18
Icc
RxOUT
LII
NC
LIO-
NC
LINEOUT
1.2k(R LL)
15 16
LIO+
NC
GND
V+
17
1u
V+
-6-
NJW1124
! APPLICATION CIRCUIT
TR1 V+
2.2k
LED1
56k 0.47
Rx-Mode :V+ Tx-Mode :GND Idle :HI-Z
1
1 V+ :MUTE GND :ACTIVE
V+
VREF2
MON
32
Monitor Out
300k
2 3
MUT
RTSW
31 30 29 28 27 26 25 24
51k 100n 5.1k 100n 1
V+
NC
VREF
V+ :Recive GND :Trensmit Open :Auto
1
NJW1124
4 5 6 7 8 9
CPT TLO2
CPR
1
470n
RLO1
470n
470n
RLO2
TLO1
470n
1u
100k
CT
VLC
100n Mic In
5.1k 51k
MCI MCO
FI
Receive In 5.1k 1 15k
V+ :ACTIVE GND :Shut Down
FO
V+
1 2 3 4
SD
OUTB
8 7 6
10u V+ (2) + Speaker Out -
100n
51k
10
10k 100n 100n
TLI2
RLI1
23
10k
1
SDTC
NJU7084
GND
11 12 13
TLI1
RLI2
22
100n
1
+ IN
V+
TX OUT
TXO
RXO
21
Receive Out
0.1u
11k
-IN
OUTA
5
5.1k
LII
NC
20 19 18 17
1 V+ (1)
22k
51k + LINE OUT -
47p
14 15 16
LIO-
NC
LIO+
NC
GND
V+
-7-
NJW1124
! TYPICAL CHARACTERISTICS
Volume control range vs ambient temperature ( VLC=0/100k) 50.0 700 Detector Max Sink Current vs ambient temperature (TLI1,TLI2,RLI1,RLI2 Max Sink Current)
600 45.0 Volume Control range [dB] 500 40.0 V+=4.0V Max Sink Current [ A]
V+=4.0V
V+=3.3V 400
V+=3.3V 35.0
300
200 30.0 100
25.0 -50 -30 -10 10 30 50 70 90 110 Ambient temperature []
0 -50 -30 -10 10 30 50 70 90 110 Ambient temperature []
Tx ATT Gain vs ambient temperature (V+=3.3V , Receive Amp Gain = 0dB , VLC=0) 10.0 10.0
Tx ATT Gain vs ambient temperature (V+=4.0V , Receive Amp Gain = 0dB , VLC=0)
0.0
Tx-Mode
0.0
Tx-Mode
-10.0 Tx ATT Gain [dB] Tx ATT Gain [dB]
-10.0
-20.0
-20.0
Idle-Mode
-30.0
Idle-Mode
-30.0
-40.0
Rx-Mode
-40.0
Rx-Mode
-50.0 -50 -30 -10 10 30 50 70 90 110 Ambient temperature []
-50.0 -50 -30 -10 10 30 50 70 90 110 Ambient temperature []
Monitor Out vs ambient temperature (V+=3.3V , RLMH=RLML=4.7k) note : The MONITOR OUT(@Idole-mode) is Hi-Z when there are neither RLMH and RLML. 4.0 4.0
Monitor Out vs ambient temperature (V+=4.0V , RLMH=RLML=4.7k) note : The MONITOR OUT(@Idole-mode) is Hi-Z when there are neither RLMH and RLML.
3.5
Rx-Mode
3.5
Rx-Mode
3.0 Monitor output Voltage [V] Monitor output Voltage [V]
3.0
2.5
2.5
Idle-Mode
2.0
2.0
Idle-Mode
1.5
1.5
1.0
1.0
0.5
Tx-Mode
-50 -30 -10 10 30 50 70 90 110
0.5
Tx-Mode
-50 -30 -10 10 30 50 70 90 110
0.0 Ambient temperature []
0.0 Ambient temperature []
-8-
NJW1124
! TYPICAL CHARACTERISTICS
MUTE Pin Voltage vs MUTE ATT Ratio (V+=3.3V , MICAMP GAIN=40dB, Rf=300k, Ri=3k, A-weighted) MUTE Pin Voltage vs MUTE ATT Ratio (V+=4.0V , MICAMP GAIN=40dB, Rf=300k, Ri=3k, A-weighted)
10 0 -10 -20 MUTE ATT Ratio [dB] -30
85 25 -40
10 0 -10 -20 MUTE ATT Ratio [dB] -30
85 25 -40
-40 -50 -60 -70 -80 -90 -100 0 0.5 1 1.5 2 2.5 MUT PIN Voltage [V]
-40 -50 -60 -70 -80 -90 -100 0 0.5 1 1.5 2 2.5 MUT PIN Voltage [V]
MUTE Pin Voltage vs MUTE ATT Ratio (V+=3.3V , MICAMP GAIN=0dB, Rf=3k, Ri=3k, A-weighted)
MUTE Pin Voltage vs MUTE ATT Ratio (V+=4.0V , MICAMP GAIN=0dB, Rf=3k, Ri=3k, A-weighted)
10
-40 25
10
-40
0
0
-10 MUTE ATT Ratio [dB]
85
-10 MUTE ATT Ratio [dB]
85
25
-20
-20
-30
-30
-40
-40
-50
-50
-60 0 0.5 1 1.5 2 2.5 MUT PIN Voltage [V]
-60 0 0.5 1 1.5 2 2.5 MUT PIN Voltage [V]
MICAMP Gain vs Frequency (V+=3.3V , RL=5.1k, Cin=1F, Rin=3k) 50 50
MICAMP Gain vs Frequency (V+=4.0V , RL=5.1k, Cin=1F, Rin=3k)
Gv=40dB, Rf=300k, Vin=1mV
40
-40 25 85
Gv=40dB, Rf=300k, Vin=1mV
40
-40 25 85
30 Gain [dB] Gain [dB]
30
20
20
10
10
Gv=0dB, Rf=3k, Vin=100mV
0
-40 25 85
Gv=0dB, Rf=3k, Vin=100mV
0
-40 25 85
-10 10 100 1000 Frequency [Hz] 10000 100000
-10 10 100 1000 Frequency [Hz] 10000 100000
-9-
NJW1124
! TYPICAL CHARACTERISTICS
Receive AMP Gain vs Frequency (V+=3.3V , RL=5.1k, Cin=1F, Rin=3k) 50 50 Receive AMP. Gain vs Frequency (V+=4.0V , RL=5.1k, Cin=1F, Rin=3k
Gv=40dB, Rf=300k, Vin=1mV
40 40
Gv=40dB, Rf=300k,Vin=1mV
30 Gain [dB] Gain [dB]
30
20
20
10
10
0
Gv=0dB, Rf=3k, Vin=100mV
0
Gv=0dB, Rf=3k, Vin=100mV
-10 10 100 1000 Frequency [Hz] LINEAMP Gain vs Frequency (V+=3.3V , RL=1.2k, Cin=1F, Rf=51k, Rin=5.1k, Cf=47pF) 30 28 10000 100000
-10 10 100 1000 Frequency [Hz] LINE AMP Gain vs Frequency (V+=4.0V , RL=1.2k, Cin=1F, Rf=51k, Rin=5.1k, Cf=47pF) 30 28 10000 100000
Gv=26dB, Vin=50mV
26 24 22 Gain [dB] 20 18 16 14 12 10 10 100 1000 Frequency [Hz] 10000 100000 Gain [dB] 26 24 22 20 18 16 14 12 10 10 100
Gv=26dB, Vin=50mV
1000 Frequency [Hz]
10000
100000
Receive AMP THD+N vs Input Voltage (V+=3.3V, RL=5.1k , Gain=40dB , Rf=300k, Ri=3k, BW:400Hz-30kHz) 10 10
Receive AMP THD+N vs Input Voltage (V+=4.0V, RL=5.1k , Gain=40dB , Rf=300k, Ri=3k, BW:400Hz-30kHz)
THD+N [%]
THD+N [%]
1
1
85 25 -40 0.1 0.0001 0.1 0.0001
85
25 -40
0.001 Input Voltage [Vrms]
0.01
0.1
0.001 Input Voltage [Vrms]
0.01
0.1
- 10 -
NJW1124
! TYPICAL CHARACTERISTICS
Receive AMP THD+N vs Input Voltage (V+=3.3V, RL=5.1k , Gain=0dB , Rf=3k, Ri=3k, BW:400Hz-30kHz) 10
Receive AMP THD+N vs Input Voltage (V+=4.0V, RL=5.1k , Gain=0dB , Rf=3k, Ri=3k, BW:400Hz-30kHz) 10
1
1
THD+N [%]
THD+N [%]
0.1
0.1
-40 0.01 85 25
85 -40
0.01 0.01
25 0.1 Input Voltage [Vrms] 1 10
0.001 0.01
0.1 Input Voltage [Vrms]
1
10
Mic AMP THD+N vs Input Voltage (V+=3.3V,MUT=0.3V, RL=5.1k , Gain=40dB , Rf=300k, Ri=3k, BW:400Hz-30kHz) 10 10
Mic AMP THD+N vs Input Voltage (V+=4.0V,MUT=0.3V, RL=5.1k , Gain=40dB , Rf=300k, Ri=3k, BW:400Hz-30kHz)
THD+N [%]
THD+N [%]
1
85 (MUT=0.3V)
1
85 (MUT=0.3V)
85 (MUT=0V) 25 -40 0.1 0.0001 0.1 0.0001
85 (MUT=0V) 25 -40
0.001 Input Voltage [Vrms]
0.01
0.1
0.001 Input Voltage [Vrms]
0.01
0.1
Mic AMP THD+N vs Input Voltage (V+=3.3V,MUT=0.3V, RL=5.1k , Gain=40dB , Rf=300k, Ri=3k, BW:400Hz-30kHz) 10
Mic AMP THD+N vs Input Voltage (V+=4.0V,MUT=0.3V, RL=5.1k , Gain=40dB , Rf=300k, Ri=3k, BW:400Hz-30kHz) 10
1 1 THD+N [%] THD+N [%]
0.1
85 (MUT=0.3V) 85 (MUT=0V)
-40 25
0.1 85 (MUT=0.3V) 0.01
85 (MUT=0V)
25 0.01 0.01 -40 0.1 Input Voltage [Vrms] 1 10 0.001 0.01 0.1 Input Voltage [Vrms] 1 10
- 11 -
NJW1124
! TYPICAL CHARACTERISTICS
LINE AMP THD+N vs Input Voltage (V+=3.3V, RL=1.2k , Gain=26dB , Rf=51k, Ri=5.1k, BW:400Hz-30kHz) 10 10 LINE AMP THD+N vs Input Voltage (V+=4.0V, RL=1.2k , Gain=26dB , Rf=51k, Ri=5.1k, BW:400Hz-30kHz)
THD+N [%]
1
THD+N [%] 85
1
85
25 -40 0.1 0.001 0.1 0.001 -40 25 0.01 Input Voltage [Vrms] RTSW PIN Voltage vs Rx&Tx ATT. Gain (V+=3.3V) 10 10 0.1 1 0.01 Input Voltage [Vrms] RTSW PIN Voltage vs Rx&Tx ATT. Gain (V+=4.0V) 0.1 1
0 Tx 85 Tx 25 -10 Rx & Tx ATT. Gain Tx -40 Rx 85 Rx 25 Rx -40 Rx & Tx ATT. Gain
0 Tx 85 Tx 25 -10 Tx -40 Rx 85 Rx 25 Rx -40
-20
-20
Rx 85 -30 Rx 25 Rx -40 -40
Tx 85 Tx 25 Tx -40
Rx 85 -30 Rx 25 Rx -40 -40
Tx 85 Tx 25 Tx -40
-50 0 0.5 1 1.5 2 2.5 3 3.5 RTSW PIN Voltage [V]
-50 0 0.5 1 1.5 2 2.5 3 3.5 4 RTSW PIN Voltage [V]
- 12 -
NJW1124
APPLICATION NOTES GENERAL DESCRIPTION The NJW1124 is a Voice Switched Speakerphone Circuit. The NJW1124 includes all of functions processing a high quality hands-free speakerphone system, such as the necessary amplifiers ( Microphone amplifier , Receive amplifier, Line amplifier), attenuators, level detectors . All external capacitors are sufficient small so that ceramic capacitors are applied. The NJW1124 detects a signal to judges which path is talking. After that, the one side path is active, another path is attenuated. This is half-duplex system. Appropriate operating keeps closed loop gain less than 0dB, and that prevents acoustic coupling. The resister and capacitor values in Fig.1 below are references. For correct operating, check in actual condition as possible as you can. And adjust the levels input each detectors. On this application notes, Base unit is defined as the unit included the NJW1124.
C6 R2 100n 5.1k
R3 51k
C7 100n R4 51k R5 10k
C8 100n
C9 R6 100n 5.1k
R7 51k
Microphone
C10 TXO LII LiOLiO+ V+
:MUTE :ACTIVE C1 1 C3 470n C4 470n C2 1u
Line Out
MCI
MUT V+ GND
MCO
TLI2
TLI1
V+
R1 300k
VREF Mic Amplifier
Tx Attenuator VREF
-1
Line Amplifier
V+ Monitor
C11 1
MUT TLO2 RLO2
Level Detector
CT
V
+
C5 1
V+ :Recive GND :Trensmit Open :idle
RTSW
Background NoiseMonitor Attenuator Control Background NoiseMonitor
CPT
CPR TLO1 RLO1
C22 1 C20 470n C21 470n
Level Detector
C23 1
VREF VREF2
BIAS
IC1
NJW1124
Receive Amplifier Rx Attenuator 1.2 A VREF GND
MUT V+ GND
RXO RLI2
: Active : Disable C15 1
VLC
R12 51k
RLI1 FO
C18 100n R13 5.1k
FI
R14 5.1k C19 100n
V+
R10 15k
5.0V
+
C16 10 C13 C17 100n
R11 10k
RVLC
Recive In
1
Speaker
IC2 NJU7084 Power Amplifier
C14 1 R9 22k R8 11k C12 100n
Fig.1 NJW1124 Block Diagram
The resistance and capacitor value above is just one example. Certain Half-duplex operation are not guaranteed. Best value depends on your microphone, speaker, and chassis. Especially, select capacitor value connected to V+(17pin) to be power supply ripple enough small (less than 5mVp-p). when 1F is not enough, select larger value capacitor.
- 13 -
NJW1124
1.Receive Attenuator Receive Attenuator has 3 modes depending on base and satellite unit condition. PARAMETER SYMBOL TEST CONDITION MIN. Receive Attenuator Gain 1 Receive Attenuator Gain 2 Receive Attenuator Gain 3 GR1 GR2 GR3 RX-mode (Receive) TX-mode (Transmit) Idle-mode (Standby),CPT=CPR=V+ 3.0 -43 -17
TYP. 6.0 -46 -20
MAX. 9.0 -50 -23
UNIT dB dB dB
1.Receive Attenuator Gain 1 , (Receive mode :Gain=+6dB) Condition: Receive signal from satellite unit, and no transmit signal to base unit. 2. Receive Attenuator Gain 2 , (Transmit mode :Gain=-46dB) Condition: Transmit signal to base unit, and no receive signal from satellite unit. 3. Receive Attenuator Gain 3 , (Idle mode :Gain=-20dB) Condition: Transmit signal to base unit, and no receive signal from satellite unit.
0
Volume Control
Receive Attenuator includes Volume Control. Volume is controlled by resister value connected to VCL pin. Fig.2 shows Volume attenuate vs. Resister value. Volume max.(0dB) : 0, Volume min. (-40dB): 100k . Transmit Attenuator doesn't equip Volume Control.
-40 0 20 40 60 VLC Resistor [k] 80 100 -10
Volume [dB]
-20
-30
Fig.2 Volume vs. VCR Resister
- 14 -
NJW1124
2.Transmit Attenuator Transmit Attenuator has 3 modes depending on base and satellite unit condition. PARAMETER SYMBOL TEST CONDITION MIN. TYP. Transmit Attenuator Gain 1 Transmit Attenuator Gain 2 Transmit Attenuator Gain 3 GT1 GT2 GT3 RX-mode (Receive) TX-mode (Transmit) Idle-mode (Standby),CPT=CPR=V+ 3.0 -43 -17 6.0 -46 -20
MAX. 9.0 -50 -23
UNIT dB dB dB
1.Transmit Attenuator Gain 1 , (Transmit mode :Gain=+6dB) Condition: Receive signal from satellite unit, and no transmit signal to base unit. 2. Transmit Attenuator Gain 2 , (Transmit mode :Gain=-46dB) Condition: Transmit signal to base unit, and no receive signal from satellite unit. 3. Transmit Attenuator Gain 3 , (Idle mode :Gain=-20dB) Condition: Transmit signal to base unit, and no receive signal from satellite unit.
3.Microphone Amplifier
Microphone Amplifier is an operational Amplifier amplifying the signal from microphone to line level. Fig.3 shows Block Diagram of Mic.Amp.. Non-inverting input keeps reference voltage inside. Mic.Amp is used as inverting amplifier. The Gain should be 40dB or less. Mic.amp equips Mute function.
C6 R2 100n 5.1k R3 51k
Microphone
MCI
MUT V+ GND
MCO
:MUTE :ACTIVE C1 1
V+
R1 300k
VREF Mic Amplifier
Tx Attenuator
Fig.3 Mic.Amp Block.(20dB Application)
Outside parts C6 R2 R3 R1 C1 Function DC decoupling Gain Setting Pop noise reduction recommend value 100nF10F 3k300k 100300k 100n10F Detail Gv=R3/R2 Input impedanceR2 The control voltage is made gradual with RC filter.
Operation MICAMP MUTE MICAMP ACTIVE
Memo Shape HPF : fc=1/(2xC6xR2) Recommend gain less than :40dB Large resistance value may cause oscillating. -
MUT(2pin) Input Voltage VIH >1.5V VIL <0.3V
- 15 -
NJW1124
4.Receive Amplifier Receive Amplifier is an operational Amplifier receiving the signal from satellite unit. Fig.4 shows Block Diagram of Mic.Amp Block Non-inverting input keeps reference voltage inside. Receive Amp is used as inverting amplifier. The Gain should be 40dB or less. Receive Amplifier doesn't equip Mute function.
Receive Amplifier Rx Attenuator VREF
FO
R13 5.1k
FI
R14 5.1k C19 100n
Recive In
Fig.4 Receive.Amp Block.(0dB Application)
Outside parts C19 R4 R3 Function DC decoupling Gain Setting recommend value 100nF10F 3k300k Detail Gv=R13/R14 Input impedanceR14 Memo Shape HPF : fc=1/(2xC19xR14) Recommend gain less than :40dB Large resistance value may cause oscillating.
- 16 -
NJW1124
5.Line Amplifier Line Amplifier transmits the signal from Tx attenuator to satellite unit. Line Amplifier consists of two operational Amplifiers. First Amplifier non-inverting input keeps reference voltage inside. First Amplifier is used as inverting amplifier. Second Amplifier includes -1 fixed Gain. These two amplifiers enable to differential output from single-ended signal.
C9 R6 100n 5.1k R7 51k
C10 TXO LII LiOLiO+
Line Out
-1
VREF Line Amplifier
Fig.5 Line Amplifier Block(26dB Application)
Outside parts Function DC decoupling C9 R6 Gain Setting R7 C10 oscillation prevention recommend value 100nF10F 3k300k 10p100pF Detail Gv=R7/R6 Input impedanceR6 Memo Shape HPF : fc=1/(2xC9xR6) Recommend gain less than :26dB Large resistance value may cause oscillating. Shape LPF : fc=1/(2xC10xR7)
Line Amplifier may oscillates, long transmission path becoming large capacitive load. In this case, add ceramic capacitor (47p to 100p) between LII and LIO-. Add it as close as possible to the terminal. The frequency should be cut more than you need. LIO+,LIO- should not be short to GND. LIO+,LIO- terminal are biased to V+/2).
C11 R8 100n 5.1k R9 51k
LINE Cable
CfL TXO LII LiOLiO+
-1
VREF Line Amplifier
Fig.6 Forbidden Circuit.
- 17 -
NJW1124
6.Monitor Terminal Monitor Terminal switches Voltage mode depending NJW1124 condition. NJW1124 condition : Monitor Terminal Voltage Receive mode V+ Transmit mode GND Idle mode Hi-Z or (V+/2) 7.Level Detector Block The NJW1124 includes Level Detector Block and Background Noise Monitor on transmit block and receive block. Level Detector Block consists of two same detectors. Fig.7 shows Level Detector block. The signal(S1 to S4) output each detector transmits to attenuator controller to change the mode. Next 7.1 and 7.2 explain about each detector and Background Noise Monitor operation details. About S1 to S4 signals, refer to 8 part.,
Tx : TLO2 Rx : RLO1
Tx : TLI2 Rx : RLI1
Level Detector Circuit
Background Noise Monitor
Tx : S3 Rx : S4
Tx : RLI2 Rx : TLI1
Level Detector Circuit
Tx : S1 Rx : S2
Tx:RLO2 Rx:TLO1
Fig.7 Level Detector Block
- 18 -
NJW1124
7.1 Level Detector Circuit Fig.8 shows level detector circuit. Level detector circuit includes logarithmic amplifier using diodes (D1,D2) to keep dynamic range. The signals input to each level detector through external coupling capacitor Ci , are converted to current by input resistance Rin and input logarithmic amplifier through TLI2,1 and RLI1,2. The current input changes diode(D1) current . When the current more than 0.54A(Current Source circuit ) inputs ,diode D1 is off, and A point voltage drops. In case of sinking current, the current increase D1 current, that increase A point voltage rises. The point voltage is defined as follows. . -6 -6 VA=0.026 x Ln [ { Iin + (0.54x10 ) } / (0.54x10 ) ] Iin=Vin/Rin.( Actually, Ci effects) The voltage A point goes through buffer Amplifier AMP2, charge the capacitor connected to TLO1.2,RLO1.2. The charging completes immediately. Response Example1 shows TLO2(Co=C5=0.1F) signal waveform outputting 200mVrms/1kHz from MICOUT(MCO pin). without input signal from TL1,TL2,RL1,and RL2,Co releases current. The Voltage Gradient is defined as follows: Vc=-0.3A/Co Response Example 2 shows the signal response finishing input the signal. Actual application being influenced on leak current and equivalent resistance in series, Vc does not accords with the formula completely. Check on the operation using actual capacitor (Use high input impedance probe like FET Measuring instrument) Small capacitor shortens the time to detect, and deteriorate the low frequency rectification characteristics. That influences on Noise Detector on next page. Large capacitor improves rectification characteristics, and noise detector function. However, extends the time to detect, it may judges the signal on noise. Appropriate capacitor value depends on a application. The input current TLI1,TLI2,RLI1,and RLI2 should be less than 100 for normal operating . Especially, gain mode has 9dB gain max, care of excessive input. Voice switch circuit may malfunctions with Excessive input current Fig.9 shows Rin(input impedance) vs. minimum input sensitivity of noise detector and maximum permissible voltage.
Ci (C7,C8 C18,C17) Vin
Iin
Rin (R4,R5 TLI2,1 R12,R11) RLI1,2
D1 AMP1 D2 Ref I1 0.54uA I2 0.54uA I3 0.3uA A AMP2 TLO2,1 RLO1,2 IO Co (C3,C20 C21,C4)
Fig.8 Level Detector Circuit Diagram
Outside parts Cin Rin Co Function DC decoupling V/I Convert Detection level keeping recommend value 100nF1F 5k100k 0.05F1.0mF Detail IinVin/Rin VC -0.3uA / CO Memo Shape HPF : fc=1/(2xCinxRin) Use " Iin " by 100mA or less. Use the capacitor leaking a little. Small capacitor deteriorate the low frequency rectification characteristics .
- 19 -
NJW1124
400 1040
400 300 MCO TLO2
1040 1020
MCO TLO2
300 1020
200
1000
200 100
TLO2 [mV]
1000 980 960 TLO2 [mV]
100 MCO [mV]
980
MCO [mV]
0
960
0
Vc
-100 940
-100
940
-200
920
-200 -300 -400 0 5 10 15 20 time [m sec] 25 30 35 40
920 900 880
VA
-300 900
-400 0 1 2 3 time [m sec] 4 5 6
880
Response example.1 MCO vs. TLO2signal (starting input) MCO = 200mVrms/1kHz C5 = 0.1F
Response example.2 MCO vs. TLO2signal (finishing input) MCO = 200mVrms/1kHz C5 = 0.1F
10000 Minumum Sensitivity Voltage Maximum Input Voltage MCO or FO Pin AC Voltage[mVrms]
Maximum Input Voltage(Vin(Fig.8)),which equal to MCO or FO Maximum Output Voltage Minimum Input Voltage(sensitivity),which is the Voltage shifting mode(idle to receive, idle to transmit).
1000
100
Note: Maximum Voltage is defined by the smaller resister, 35% value of R5, R11 or R4, R11 value.
10 1 10 Input Resistance[k] 100
Fig.9 Minimum Input Voltage vs. Input Resistance (R4 or R12 Theoretical Value resistance R4=R5,R12=R11 condition)
- 20 -
NJW1124
7.2 Background Noise Monitor Background Noise Monitor judges whether the input signal is noise or sound or voice by TLO2 and RLO2 voltage, and change the mode. The NJW1124 includes the Background noise monitor on transmit side and receive side. Fig.10 shows Block diagram of Background noise monitor. The voltage difference between TLO2 or RLO1 and Ref is amplified 8.6dB on AMP1. nd The signal from AMP1 inputs 2 stage AMP2 and comparator (COMP). The COMP non-inverting input voltage becoming 36mV higher than inverting, COMP output 1,which shows the NJW1124 is transmit or receive mode. At the same time, external capacitor charged from 0.8A internal current source, until the CCP voltage becomes 46mV higher than AMP2 input voltage. The equivalent below shows CCP voltage charging. VCCP= 0.8A/CCP For example, CCP=1F, VCP=0.8V/sec. Without the input signal, C CP discharged and finally reset the Background noise monitor. Response example is ex.3. The signal like continued sign wave inputting, COMP output `0' which is noise-monitoring mode (idle-mode). The signal like conversation sound inputting, CCP continues to charge and discharge. COMP output continued to `1', which is transmit or receive mode. Small Ccp shortens the time shifting to `0' condition. Too small CCP attenuates even the conversation signal. Large CCP keeps `1' condition long, which lengthen attenuating time. Capacitor should be adjusted appropriately on actual application. (Use high input impedance like FET probe measuring voltage of CPT, CPR pin.)
CCP (C2,C22)
Tx : TLO2 Rx : RLO1
Tx : CPT Rx : CPR
19k
Level Detector
32k AMP1
46mV
0.8 A
AMP2
COMP
Ref
Tx : S3 Rx : S4
36mV
Fig.8 Background Noise Monitor Block Diagram
Function Noise Detection
1300 1250 1200 1150 TLO2 , CPT [mV] 1100 1050 1000 950 900 850 800 0 100 200 300 time [m sec] 400 500
TLO2 , CPT [mV]
recommendation value 100nF1F
Detail 1300 1250 1200 1150 1100 1050 1000 950 900 850 800 0 10
Memo The time for noise detection depends on this.
TLO2 CPT
TLO2 CPT
20 time [m sec]
30
40
50
Response example.3 TLO2 vs. CPT signal (input start) MCO = 200mVrms/1kHz C5 = 0.1F, C4=1F
Response example.4 TLO2 vs. CPT signal (input finish) MCO = 200mVrms/1kHz C5 = 0.1F, C4=1F - 21 -
NJW1124
8.Attenuator Controller Attenuator Controller controls each mode(Transmit or Receive or idle) by the signal(S1 to S4) from level detector according as table.1 below Table.1 shows truth table (On RTSW=Open). Internal 12A current source circuit charges and discharges C7, connected with CT pin On the mode changing condition, VC5 shows voltage change according as the formula below. . VC7 = 12uA/C5 (11.1) (C7 is C5 capacitance connected to CT pin.) on initial state, CT pin voltage equals to Vref voltage. Shifting to transmit mode, C7 discharges and become lower voltage than Vref voltage. Example 5 and 6 shows behaviors. VCT voltage is CT voltage minus Vref voltage. On receive mode, internal current source charging C5 raises CT voltage. CT pin voltage shows operating condition(Transmit or Receive or idle). ( more than 100M impedance probe should be monitoring the voltage. `FAST idle mode' enables to shift promptly charging C7 rapidly. On `SLOW idle mode', mode shifts gently. Both time constants are below: =RAXC5 (RAX is RA1 RA2 resistance. After sec, The voltage is attenuated to 1/e default value) For example, C7=1F, =600m sec. attenuator gain GAT estimate as below: GAT(TX) = 0.1 x exp { -VCT / 0.026 } on transmit mode GAT(RX) =0.1 x exp { VCT / 0.026 } on receive mode (11.3) (11.4)
C5 = 1F, attenuator time constant on SLOW idle mode is about 225m sec. Table.6 as below shows response of transmit signal wave: Fig.11 shows VCT vs. GAT. Adjust this order for appropriate operating: 1.Resistance connecting to TLI1.2 and RLI1.2 2.Capacitor connecting to TLO1.2 and RLO1.2 3.Capacitor connecting CPT, CPR. When adjusting above doesn't enable to appropriate operating(attenuating too fast or shifting too slow etc.), adjust C5 value connecting to CT pin . Typical value is 1F.
Table.1 Truth Table
S1 Tx Tx Rx Rx Tx Tx Rx RX S2 Tx Rx Tx Rx Tx Rx Tx Rx S3 1 y y X 0 0 0 X S4 X y y 1 X 0 0 0 Mode Tx Mode FAST Idle Mode FAST Idle Mode Rx Mode SLOW Idle Mode SLOW Idle Mode SLOW Idle Mode SLOW Idle Mode
S1 Result comparing RLO2 and TLO2 (RLI2 and TLI2 ***Detecting Base Unit side) RLO2>TLO2 [Rx] TLO2>RLO2 [Tx] S2 Result comparing RLO1and TLO1 (RLI1 and TLI1***Detecting Satellite Unit side) RLO1>TLO1 [Rx] TLO1>RLO1 [Tx] S3S4 Output Background Noise Monitor [1]:Detecting signal [0]:Judging noise [x]Don't Care [y]Both C3 and C4 is not 0.
- 22 -
NJW1124
10 0 -10 200 -20 -30 VCT [mV] -40 -50 -60 -200 -70 -80 -90 0 2 4 6 8 time [m sec] 10 12 14 -300 -400 100 MCO[mV] 400 300
VCT MCO
800 600 400 MCO , TCO [mV] 200 0 -200 -400 -600 -800 0 2 4 6 8 time [m sec] 10 12 14
TXO MCO
0 -100
10 0 -10
Response example.5 MCO vs. CT-VREF signal (input start) MCO = 200mVrms/1kHz C7=1F
Response example.6 MCO vs. TXO(AC) signal (input start) MCO = 200mVrms/1kHz C7=1F
800 600 400 TXO GATTx 2.5 2.0 1.5 1.0 200 TXO [mV] 0 -200 0.5 0.0 -0.5 -1.0 -400 -1.5 -600 -800 -2.0 -2.5 2000 GAT(Tx)
-20 -30 VCT [mV] -40 -50 -60 -70 -80 -90 0 250 500 750 1000 time [m sec] 1250 1500 1750 2000
360m sec
0
250
500
750
1000 time [m sec]
1250
1500
1750
Response example.7 CT-VREF signal (input continue) MCO = 200mVrms/1kHz C7=1F SLOW idle mode
10 GAT(TX) GAT(RX) 0
Response example.8 GAT vs. TCO signal (input start) MCO = 200mVrms/1kHz C7=1F SLOW idle mode
-10 GAT [dB]
-20
-30
-40
-50 -100
-75
-50
-25
0 VCT [mV]
25
50
75
100
Fig.11 GAT vs. VCT Calculated Spectrum
- 23 -
NJW1124
RTSW shifts the mode forcibly. RTSW changes the CTpin voltage forcibly to shift the mode. Ex.9 shows the response to RTSW.
100 80 60 40 20 VCT [mV] 0 -20 -40 -60 -80 -100 0 2 4 6 8 10 time [m sec] 12 14 16 18 20 Tx Mode Level RTSW State : Rx -> Tx Rx Mode Level
Response example.9 RTSW shifting (Receive mode to Transmit mode) C7=1F
- 24 -
NJW1124
10.Acoustic Coupling Reduction To reduce Acoustic Coupling, isolating speaker and microphone is effective. Adjusting resistance value connected to TLI1, TLI2, (R4, R5, R11) and RLI1 is also effective, For example, configure R12,R4 value is 2 to 6 times than R5,R11. Reducing sensitivity to echo enables to operate normally.
C6 R2 100n 5.1k
R3 51k
C7 100n R4 51k R5 10k
C8 100n
C9 R6 100n 5.1k
R7 51k
Microphone
C10 TXO LII LiOLiO+ V+ V
+
Line Out
MCI
MCO
TLI2
TLI1
R1 300k
VREF Mic Amplifier
Sensitivity:Low
Tx Attenuator VREF Line Amplifier
-1
V+ Monitor
C11 1
C1 1 C3 470n C4 470n C2 1u
MUT TLO2 RLO2
Level Detector
CT
+
C5 1
Receive Voice Acoustic coupling
CPT
Background NoiseMonitor
Attenuator Control
Sensitivity:High
V Setting TLI2 resistance (R4) twice to RTSW 6times than RLI2 resistance (R11), Background NoiseMonitor reduces the level detector sensitivityC22 1 CPR to reduce acoustic coupling. C20 Level Detector
TLO1 RLO1
470n C21 470n
C23 1
VREF VREF2
BIAS
IC1
NJW1124
Receive Amplifier Rx Attenuator GND 1.2 A VREF
RXO RLI2 V+
R10 15k
5.0V
VLC
R12 51k
RLI1 FO
C18 R13
FI
R14 C19 100n
+
C16 10 C13 C17 100n
R11 10k
RVLC
100n Receive5.1k Sound5.1k
Recive In
C15 1
1
Speaker
IC2 NJU7084 Power Amplifier
C14 1 R9 22k R8 11k C12 100n
Fig.12 Acoustic Coupling Reduction Reducing the sensitivity of R4,R12 reduces the time shifting to noise mode. In case of too fast shifting, enlarge capacitor connected to CPT,CPR.
- 25 -
NJW1124
Notes:1 To reduce Pop-Noise of power-on and off. Appropriate power supply sequence reduces pop-noise. Initial condition: No power supply. CD switch of Speaker Amplifier should be standby condition. The circuit connected to Line out and Receive In is off. Power-on sequence 1.Power-on NJW1124. Concurrently The circuit connected to Receive In power on. 2.After 1 sec later, the circuit connected to Line OUT and Speaker Amplifier IC power on. 3.After 1 sec later, Speaker Amplifier IC shifts active mode. Power-off sequence 1.Speaker Amplifier shift standby mode. 2.After 1 sec later, the circuit connected to Line OUT and Speaker Amplifier power off. 3.After 1 sec later, NJW1124 power off. Concurrently, the circuit connected to Receive In power off.
- 26 -
NJW1124
Notes:2: Filter circuit using Receive amplifier, Mic. Amplifier, Line amplifier. Receive amplifier, Mic. Amplifier, Line amplifier enable to form active filter circuit which is 1 order or 2 HPF or LPF or BPF. 1.1 order HPF,LPF circuit example st Fig.13 shows 1 order (-6dB/oct) HPF, LPF circuit. Combining HPF formed by Co and R1, and LPF formed by C1 and R2, forms BPF. (Co should be also used typical application as DC decoupling.)
st
st nd
order,
C1 R2 C0 Receive In R1 FI FO
Response
f C ( HPF ) = f C ( LPF )
1 2C0 R1 1 = 2C1 R2
+6dB/oc
-6dB/oct
Ref st Fig.13 1 order HPF,LPF circuit example
Frequency
fc(HPF)
fc(LPF)
2.2 order LPF circuit example st Fig.14 shows 1 order (-12dB/oct) LPF circuit. Same as 1st order filter, Co should be used as DC decoupling. C2 selecting arbitrarily, Butterworth filter forming coefficient is as below.
nd
R1 =
R2 C0 Receive In R1 R3 FI C1 Ref FO C2
1 2 2Gf C ( LPF )C2 1 2 2f C ( LPF )C2 1 2 2 (G + 1)fC ( LPF )C2
R2 = R3 =
Fig.14 2
Response
nd
order LPF circuit example
C3 = 2(G + 1)C2 G = Gain
+6dB/oc -12dB/oct
Frequency
fc(HPF)
fc(LPF)
fC(HPF) is same as 1 order type above.
st
- 27 -
NJW1124
Fig.15 shows 2
nd
order LPF(Gain=20dB, fc(LPF) = 4kHz) circuit example.
C0 Receive In
5.6k
56k 5.1k FI 12n
510p
FO
Fig.15 2
nd
Ref order LPF(Gain=20dB, fc(LPF) = 4kHz, Butterworth filter)
circuit example.
3.2 order HPF circuit example st Fig.16 shows 2 order (-12dB/oct) HPF circuit. Co=C2, Butterworth filter forming coefficient is as below.
nd
C1 C0 Receive In C2 FI R1
R2
R1 =
FO
2 2f C ( HPF )C0 (2 + 1 / G )
R2 =
2G + 1 2f C ( HPF )C0
Ref
Fig.16 2
nd
order HPF circuit example.
C0 G * C0 = C 2 C1 =
Fig.17 shows HPF(Gain=20dB,Fc(HPF)=200Hz) circuit example.
100n Receive In
10n 100n FI 5.6k
160k
FO Ref
Fig.17 2 order HPF circuit example. Gain=20dB,Fc(HPF)=200Hz, Butterworth filter
nd
- 28 -
NJW1124
Notes:3 list of Parts of Attenuator controller
Terminal Cin
Parts
Recommend Value
Notes The input capacitor forms HPF with Rin. V-I converter,which depends on sensitivity of each level detectors and noise detector. Smaller value lower detection level. Larger value raise detection level. Input voltage should be less than 100mA(200 @25oC). The capacitor keeps voltage level.Larger value extends swicthing time.Smaller value shortens swicthing time, and deteriorate rectification property that adverse affects back ground noise monitor on low frequency signal. The capacitor judges whether the signal is noise.Larger value extends the judging time.Smaller value shortens the judging time. The capacitor generates the voltage controlling attenuater. Larger value extends attenuating time on switching and idle mode.Smaller value shortens the attenuating time.Please be careful of conduction caused by condensation due to this terminal is high impedance.Attenuater gain may be fluctuant .
C7,C8,C17,C1 100nF1F
Rin
5.1k51k R4,R5,R11,R12
Co Ccp
C4,C5,C20,C2 0.05F1F C2,C22 100nF1F
Cct
C5
1F
[CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.
- 29 -


▲Up To Search▲   

 
Price & Availability of NJW1124

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X